Appendix Rajarshi Tiwari
Harish-Chandra Research Institute, Prayagraj, UP, INDIA
1 Tight binding systems ¶ 1.1 Dispersion for ordered phases ¶ Here we show how to calculate dispersion for selected ordered phases, which have relatively small unit cells. We define the unit cell for each phase, and go to k − k- k − space where the Hamiltonian becomes block diagonal.
1.1.1 Spectrum for collinear phases ¶ The Hamiltonian can be diagonalized by Fourier transformation. We write the Hamiltonian H H H as H = H 0 + H J H = H_{0}+H_{J} H = H 0 + H J , where, H 0 H_0 H 0 is given by,
H 0 = ∑ X ⃗ σ [ ϵ 1 f X ⃗ , σ † f X ⃗ , σ + ϵ 2 m X ⃗ + a 1 ⃗ , σ † m X ⃗ + a 1 ⃗ , σ † ] − t ∑ X ⃗ , σ , δ ⃗ ∈ NN ( f X ⃗ , σ † m X ⃗ + δ ⃗ , σ + h.c. ) − t ′ ∑ X ⃗ , σ , δ ⃗ ∈ NNN ( m X ⃗ + a 1 ⃗ , σ † m X ⃗ + a 1 ⃗ + δ ⃗ , σ + h.c. ) \begin{align}
\nonumber
H_{0} &=&\sum_{\vec{X}\sigma} [ \epsilon_{1}f^{\dagger}_{\vec{X},\sigma}f_{\vec{X},\sigma}
+\epsilon_{2}m^{\dagger}_{\vec{X}+\vec{a_1},\sigma}m^{\dagger}_{\vec{X}+\vec{a_1},\sigma}]
-t\sum_{\vec{X},\sigma,\vec{\delta} \in \textrm{NN}}(f^{\dagger}_{\vec{X},\sigma}m_{\vec{X}+\vec{\delta},\sigma}+\textrm{h.c.})
\\
&~&-t'\sum_{\vec{X},\sigma,\vec{\delta}\in \textrm{NNN}}(m^{\dagger}_{\vec{X}+\vec{a_1},\sigma}m_{\vec{X}+\vec{a_1}+\vec{\delta},\sigma}+\textrm{h.c.})\\
\end{align} H 0 = X σ ∑ [ ϵ 1 f X , σ † f X , σ + ϵ 2 m X + a 1 , σ † m X + a 1 , σ † ] − t X , σ , δ ∈ NN ∑ ( f X , σ † m X + δ , σ + h.c. ) − t ′ X , σ , δ ∈ NNN ∑ ( m X + a 1 , σ † m X + a 1 + δ , σ + h.c. ) and H J H_J H J is given by
H J = J ∑ X ⃗ S ⃗ ( X ⃗ ) ⋅ σ ⃗ α , β f X ⃗ , α † f X ⃗ , β H_{J} = J \sum_{\vec{X}}\vec{S}(\vec{X}) \cdot \vec{\sigma}_{\alpha,\beta}f^{\dagger}_{\vec{X},\alpha}f_{\vec{X},\beta} H J = J X ∑ S ( X ) ⋅ σ α , β f X , α † f X , β The lattice vector X ⃗ \vec{X} X is defined as X ⃗ = n 1 A 1 ⃗ + n 2 A 2 ⃗ + n 3 A 3 ⃗ \vec{X} = n_{1}\vec{A_{1}} + n_{2}\vec{A_{2}} + n_{3}\vec{A_{3}} X = n 1 A 1 + n 2 A 2 + n 3 A 3 with A i , i = 1 , 2 , 3 A_i,i=1,2,3 A i , i = 1 , 2 , 3 as the primitive
lattice vectors (A 1 = ( 2 , 0 , 0 ) A_1=(2,0,0) A 1 = ( 2 , 0 , 0 ) , A 2 = ( 1 , 1 , 0 ) A_2=(1,1,0) A 2 = ( 1 , 1 , 0 ) , A 3 = ( 0 , 1 , 1 ) A_3=(0,1,1) A 3 = ( 0 , 1 , 1 ) ), defining the periodicity of lattice with the 2 site unit cell. With this periodicity,
the unit cell has one ‘f f f ’ and one ‘m m m ’ site at ( 0 , 0 , 0 ) (0,0,0) ( 0 , 0 , 0 ) and ( 1 , 0 , 0 ) (1,0,0) ( 1 , 0 , 0 ) respectively. Now doing a Fourier transform on ‘f f f ’ operators (similarly for 'm m m ’s)
f X ⃗ , σ † = 1 N ∑ k ⃗ f k ⃗ , σ † exp ( i k ⃗ ⋅ X ⃗ ) \begin{align*}
f^{\dagger}_{\vec{X},\sigma} = \frac{1}{\sqrt{N}}\sum_{\vec{k}}f^{\dagger}_{\vec{k},\sigma}\exp(i\vec{k}\cdot\vec{X})
\end{align*} f X , σ † = N 1 k ∑ f k , σ † exp ( i k ⋅ X ) This simplifies the non-magnetic part H 0 H_{0} H 0 as follows,
H 0 = ∑ k ⃗ , σ [ ( ϵ 2 + A k ⃗ ′ ) m k ⃗ , σ † m k ⃗ , σ + ϵ 1 f k ⃗ , σ † f k ⃗ , σ + ( A k ⃗ f k ⃗ , σ † m k ⃗ , σ + h.c. ) ] \begin{align*}\nonumber
H_{0} = \sum_{\vec{k},\sigma} \left[ (\epsilon_{2}+A'_{\vec{k}})m^{\dagger}_{\vec{k},\sigma}m_{\vec{k},\sigma}
+\epsilon_{1}f^{\dagger}_{\vec{k},\sigma}f_{\vec{k},\sigma}+(A_{\vec{k}}f^{\dagger}_{\vec{k},\sigma}m_{\vec{k},\sigma}+\textrm{h.c.})\right]
\end{align*} H 0 = k , σ ∑ [ ( ϵ 2 + A k ′ ) m k , σ † m k , σ + ϵ 1 f k , σ † f k , σ + ( A k f k , σ † m k , σ + h.c. ) ] = ∑ k ⃗ , σ ( f k ⃗ , σ † m k ⃗ , σ † ) ( ϵ 1 A k ⃗ A k ⃗ ϵ 2 + A k ⃗ ′ ) ( f k ⃗ , σ m k ⃗ , σ ) =\sum_{\vec{k},\sigma}\left(f^{\dagger}_{\vec{k},\sigma} m^{\dagger}_{\vec{k},\sigma} \right)
\left(\begin{array}{cc} \epsilon_1 & A_{\vec{k}}\\A_{\vec{k}} & \epsilon_2+A^{'}_{\vec{k}} \end{array}\right)
\left(\begin{array}{c} f_{\vec{k},\sigma} \\ m_{\vec{k},\sigma} \end{array}\right) = k , σ ∑ ( f k , σ † m k , σ † ) ( ϵ 1 A k A k ϵ 2 + A k ′ ) ( f k , σ m k , σ ) Which is reduced to 2 × 2 2\times 2 2 × 2 block. the amplitudes A k ⃗ = − 2 t ( cos k x + cos k y + cos k z ) A_{\vec{k}}=-2t(\cos{k_{x}}+\cos{k_{y}}+\cos{k_{z}}) A k = − 2 t ( cos k x + cos k y + cos k z ) and A k ⃗ ′ = − 4 t ′ ( cos k x cos k y + cos k y cos k z + cos k z cos k x ) A'_{\vec{k}}=-4t'(\cos{k_{x}}\cos{k_{y}}+\cos{k_{y}}\cos{k_{z}}+\cos{k_{z}}\cos{k_{x}}) A k ′ = − 4 t ′ ( cos k x cos k y + cos k y cos k z + cos k z cos k x ) are just the cubic and FCC dispersions.
Next, we have to simplify the H J H_J H J part. For the collinear phases, S ⃗ ( X ⃗ ) \vec{S}(\vec{X}) S ( X ) can be expressed as S ⃗ ( X ⃗ ) = ( 0 , 0 , e i q ⃗ ⋅ X ⃗ ) \vec{S}(\vec{X}) = (0,0,e^{i\vec{q}\cdot\vec{X}}) S ( X ) = ( 0 , 0 , e i q ⋅ X ) . For FM, q ⃗ \vec{q} q is trivially ( 0 , 0 , 0 ) (0,0,0) ( 0 , 0 , 0 ) . For A-type, q ⃗ = ( π 2 , − π 2 , π 2 ) \vec{q} = (\frac{\pi}{2},-\frac{\pi}{2},\frac{\pi}{2}) q = ( 2 π , − 2 π , 2 π ) , while for C-type q ⃗ = ( 0 , π , − π ) \vec{q} = (0,\pi,-\pi) q = ( 0 , π , − π ) . Now, plugging this value of S ⃗ ( X ⃗ ) \vec{S}(\vec{X}) S ( X ) in H J H_J H J and doing the Fourier transform for the H J H_J H J , we get,
H J = J ∑ x ⃗ σ f k ⃗ , σ † f k ⃗ + q ⃗ , σ ; σ = ± 1 H_J = J\sum_{\vec{x}}\sigma
f^{\dagger}_{\vec{k},\sigma}f_{\vec{k}+\vec{q},\sigma} \quad ;\sigma= \pm 1 H J = J x ∑ σ f k , σ † f k + q , σ ; σ = ± 1 Now q ⃗ = 0 \vec{q}=0 q = 0 for FM, so H J H_J H J becomes diagonal. Thus total Hamiltonian H H H still remains 2 × 2 2\times 2 2 × 2 block, and the eigenvalues for the FM are solutions of the following 2 × 2 2\times 2 2 × 2 block
H 2 X 2 ( k ⃗ , σ ) = ( ϵ 1 + J σ A k ⃗ A k ⃗ ϵ 2 + A k ⃗ ′ ) H_{2X2}(\vec{k},\sigma) = \left(
\begin{array}{cc}
\epsilon_1 + J\sigma& A_{\vec{k}} \\
A_{\vec{k}} & \epsilon_{2} + A'_{\vec{k}}
\end{array}
\right) H 2 X 2 ( k , σ ) = ( ϵ 1 + J σ A k A k ϵ 2 + A k ′ ) For A-type and C-type phases, we get matrix elements connecting ∣ k ⃗ , σ ⟩ → ∣ k ⃗ + q ⃗ , σ ⟩ → ∣ k ⃗ , σ ⟩ |\vec{k},\sigma\rangle \to |\vec{k}+\vec{q},\sigma\rangle \to |\vec{k},\sigma\rangle ∣ k , σ ⟩ → ∣ k + q , σ ⟩ → ∣ k , σ ⟩
, so that now we get to solve following 4 × 4 4\times4 4 × 4 block
H 4 × 4 ( k ⃗ , σ ) = ( ϵ 1 J σ A k ⃗ 0 J σ ϵ 1 0 A k ⃗ + q ⃗ A k ⃗ 0 ϵ 2 + A k ⃗ ′ 0 0 A k ⃗ + q ⃗ 0 ϵ 2 + A k ⃗ ′ ) H_{4\times4}(\vec{k},\sigma) =
\left(
\begin{array}{cccc}
\epsilon_1 & J\sigma & A_{\vec{k}} & 0 \\
J\sigma & \epsilon_1 & 0 & A_{\vec{k}+\vec{q}} \\
A_{\vec{k}} & 0 & \epsilon_2+ A'_{\vec{k}} & 0 \\
0 & A_{\vec{k}+\vec{q}} & 0 & \epsilon_2+ A'_{\vec{k}}
\end{array}
\right) H 4 × 4 ( k , σ ) = ⎝ ⎛ ϵ 1 J σ A k 0 J σ ϵ 1 0 A k + q A k 0 ϵ 2 + A k ′ 0 0 A k + q 0 ϵ 2 + A k ′ ⎠ ⎞ From these we obtain the spectrum for F,A,C phases on large (∼ 10 0 3 − 50 0 3 \sim 100^3-500^3 ∼ 10 0 3 − 50 0 3 ) lattices, which can be used to calculate the density of states, phase diagram, phase separation windows etc.
1.2 Spectrum for the ‘flux’ phase ¶ The unit cell for the ‘flux’ phase has 4B B B , and 4B ′ B' B ′ atoms lying on the corners of the cube. The primitive lattice vectors become A i = { ( 2 , 0 , 0 ) , ( 0 , 2 , 0 ) , ( 0 , 0 , 2 ) } A_i=\{(2,0,0),(0,2,0),(0,0,2)\} A i = {( 2 , 0 , 0 ) , ( 0 , 2 , 0 ) , ( 0 , 0 , 2 )} At finite J J J , the same procedure (as for collinear phases) will reduce the Hamiltonian into 16 × 16 16\times 16 16 × 16 block. To make life a bit simple, we use the J→ ∞ \rightarrow \infty → ∞ limit on the Hamiltonian for the ‘flux’ phase, which is same as used in (Sanyal & Majumdar (2009) ) except its the 3D version.
Figure 1: Unit cell structure for the Flux phase.
This gives us 4 spin-less f i f_i f i levels and 8 m i , σ m_{i,\sigma} m i , σ levels in the unit cell, which upon simplification reduces to 12 × 12 12\times 12 12 × 12 block. With the basis ( f i ( k ) m i ↑ ( k ) ) i ∈ { 1 , 2 , 3 , 4 } \left(\begin{array}{cc} f_i(k) & m_{i\uparrow}(k) \end{array}\right)_{i\in \{1,2,3,4\}} ( f i ( k ) m i ↑ ( k ) ) i ∈ { 1 , 2 , 3 , 4 } The Hamiltonian breaks into 12 × 12 12\times 12 12 × 12 block given as follows
H = ( Δ 0 0 0 t 1 ↑ a 1 t 1 ↓ a 1 t 1 ↑ a 2 t 1 ↓ a 2 0 0 t 1 ↑ a 3 t 1 ↓ a 3 0 Δ 0 0 t 2 ↑ a 2 t 2 ↓ a 2 t 2 ↑ a 1 t 2 ↓ a 1 t 2 ↑ a 3 t 2 ↓ a 3 0 0 0 0 Δ 0 t 3 ↑ a 3 t 3 ↓ a 3 0 0 t 3 ↑ a 2 t 3 ↓ a 2 t 3 ↑ a 1 t 3 ↓ a 1 0 0 0 Δ 0 0 t 4 ↑ a 3 t 4 ↓ a 3 t 4 ↑ a 1 t 4 ↓ a 1 t 4 ↑ a 2 t 4 ↓ a 2 t 1 ↑ ∗ a 1 t 2 ↑ ∗ a 2 t 3 ↑ ∗ a 3 0 0 0 t 12 0 t 23 0 t 13 0 t 1 ↓ ∗ a 1 t 2 ↓ ∗ a 2 t 3 ↓ ∗ a 3 0 0 0 0 t 12 0 t 23 0 t 13 t 1 ↑ ∗ a 2 t 2 ↑ ∗ a 1 0 t 4 ↑ ∗ a 3 t 12 0 0 0 t 13 0 t 23 0 t 1 ↓ ∗ a 2 t 2 ↓ ∗ a 1 0 t 4 ↓ ∗ a 3 0 t 12 0 0 0 t 13 0 t 23 0 t 2 ↑ ∗ a 3 t 3 ↑ ∗ a 2 t 4 ↑ ∗ a 1 t 23 0 t 13 0 0 0 t 12 0 0 t 2 ↓ ∗ a 3 t 3 ↓ ∗ a 2 t 4 ↓ ∗ a 1 0 t 23 0 t 13 0 0 0 t 12 t 1 ↑ ∗ a 3 0 t 3 ↑ ∗ a 1 t 4 ↑ ∗ a 2 t 13 0 t 23 0 t 12 0 0 0 t 1 ↓ ∗ a 3 0 t 3 ↓ ∗ a 1 t 4 ↓ ∗ a 2 0 t 13 0 t 23 0 t 12 0 0 ) H =
\left(
\begin{array}{cccccccccccc}
\Delta & 0 & 0 & 0 & t_{1\uparrow}a_1 & t_{1\downarrow}a_1 & t_{1\uparrow}a_2 & t_{1\downarrow}a_2 & 0 & 0 & t_{1\uparrow}a_3 & t_{1\downarrow}a_3 \\
0 & \Delta & 0 & 0 & t_{2\uparrow}a_2 & t_{2\downarrow}a_2 & t_{2\uparrow}a_1 & t_{2\downarrow}a_1 & t_{2\uparrow}a_3 & t_{2\downarrow}a_3 & 0 & 0 \\
0 & 0 & \Delta & 0 & t_{3\uparrow}a_3 & t_{3\downarrow}a_3 & 0 & 0 & t_{3\uparrow}a_2 & t_{3\downarrow}a_2 & t_{3\uparrow}a_1 & t_{3\downarrow}a_1 \\
0 & 0 & 0 & \Delta & 0 & 0 & t_{4\uparrow}a_3 & t_{4\downarrow}a_3 & t_{4\uparrow}a_1 & t_{4\downarrow}a_1 & t_{4\uparrow}a_2 & t_{4\downarrow}a_2 \\
t_{1\uparrow}^{*}a_1 & t_{2\uparrow}^{*}a_2 & t_{3\uparrow}^{*}a_3 & 0 & 0 & 0 & t_{12} & 0 & t_{23} & 0 & t_{13} & 0 \\
t_{1\downarrow}^{*}a_1 & t_{2\downarrow}^{*}a_2 & t_{3\downarrow}^{*}a_3 & 0 & 0 & 0 & 0 & t_{12} & 0 & t_{23} & 0 & t_{13} \\
t_{1\uparrow}^{*}a_2 & t_{2\uparrow}^{*}a_1 & 0 & t_{4\uparrow}^{*}a_3 & t_{12} & 0 & 0 & 0 & t_{13} & 0 & t_{23} & 0 \\
t_{1\downarrow}^{*}a_2 & t_{2\downarrow}^{*}a_1 & 0 & t_{4\downarrow}^{*}a_3 & 0 & t_{12} & 0 & 0 & 0 & t_{13} & 0 & t_{23} \\
0 & t_{2\uparrow}^{*}a_3 & t_{3\uparrow}^{*}a_2 & t_{4\uparrow}^{*}a_1 & t_{23} & 0 & t_{13} & 0 & 0 & 0 & t_{12} & 0 \\
0 & t_{2\downarrow}^{*}a_3 & t_{3\downarrow}^{*}a_2 & t_{4\downarrow}^{*}a_1 & 0 & t_{23} & 0 & t_{13} & 0 & 0 & 0 & t_{12} \\
t_{1\uparrow}^{*}a_3 & 0 & t_{3\uparrow}^{*}a_1 & t_{4\uparrow}^{*}a_2 & t_{13} & 0 & t_{23} & 0 & t_{12} & 0 & 0 & 0 \\
t_{1\downarrow}^{*}a_3 & 0 & t_{3\downarrow}^{*}a_1 & t_{4\downarrow}^{*}a_2 & 0 & t_{13} & 0 & t_{23} & 0 & t_{12} & 0 & 0
\end{array}
\right) H = ⎝ ⎛ Δ 0 0 0 t 1 ↑ ∗ a 1 t 1 ↓ ∗ a 1 t 1 ↑ ∗ a 2 t 1 ↓ ∗ a 2 0 0 t 1 ↑ ∗ a 3 t 1 ↓ ∗ a 3 0 Δ 0 0 t 2 ↑ ∗ a 2 t 2 ↓ ∗ a 2 t 2 ↑ ∗ a 1 t 2 ↓ ∗ a 1 t 2 ↑ ∗ a 3 t 2 ↓ ∗ a 3 0 0 0 0 Δ 0 t 3 ↑ ∗ a 3 t 3 ↓ ∗ a 3 0 0 t 3 ↑ ∗ a 2 t 3 ↓ ∗ a 2 t 3 ↑ ∗ a 1 t 3 ↓ ∗ a 1 0 0 0 Δ 0 0 t 4 ↑ ∗ a 3 t 4 ↓ ∗ a 3 t 4 ↑ ∗ a 1 t 4 ↓ ∗ a 1 t 4 ↑ ∗ a 2 t 4 ↓ ∗ a 2 t 1 ↑ a 1 t 2 ↑ a 2 t 3 ↑ a 3 0 0 0 t 12 0 t 23 0 t 13 0 t 1 ↓ a 1 t 2 ↓ a 2 t 3 ↓ a 3 0 0 0 0 t 12 0 t 23 0 t 13 t 1 ↑ a 2 t 2 ↑ a 1 0 t 4 ↑ a 3 t 12 0 0 0 t 13 0 t 23 0 t 1 ↓ a 2 t 2 ↓ a 1 0 t 4 ↓ a 3 0 t 12 0 0 0 t 13 0 t 23 0 t 2 ↑ a 3 t 3 ↑ a 2 t 4 ↑ a 1 t 23 0 t 13 0 0 0 t 12 0 0 t 2 ↓ a 3 t 3 ↓ a 2 t 4 ↓ a 1 0 t 23 0 t 13 0 0 0 t 12 t 1 ↑ a 3 0 t 3 ↑ a 1 t 4 ↑ a 2 t 13 0 t 23 0 t 12 0 0 0 t 1 ↓ a 3 0 t 3 ↓ a 1 t 4 ↓ a 2 0 t 13 0 t 23 0 t 12 0 0 ⎠ ⎞ Where the symbols in the above are defined as
α = 3 + 1 2 3 ; β = 3 − 1 2 3 ; z = 1 − i 2 ; a 1 = 2 cos k 1 ; a 2 = 2 cos k 2 ; a 3 = 2 cos k 3 t 12 = − 4 t ′ cos k 1 cos k 2 ; t 23 = − 4 t ′ cos k 2 cos k 3 ; t 13 = − 4 t ′ cos k 1 cos k 3 ; t 1 ↑ = t 2 ↑ = − t α ; t 3 ↑ = t 4 ↑ = − t β ; t 1 ↓ = − t 2 ↓ = t z β ; t 3 ↓ = − t 4 ↓ = − t z ∗ α \begin{align*}\nonumber
\alpha = \sqrt{\frac{\sqrt{3}+1}{2\sqrt{3}}};~~\beta = \sqrt{\frac{\sqrt{3}-1}{2\sqrt{3}}};
~~ z = \frac{1-i}{\sqrt{2}};~~
a_1 = 2\cos{k_1}; a_2 = 2\cos{k_2}; a_3 = 2\cos{k_3}\\\nonumber
t_{12} = -4t'\cos{k_1}\cos{k_2}; t_{23} = -4t'\cos{k_2}\cos{k_3}; t_{13} = -4t'\cos{k_1}\cos{k_3};\\\nonumber
t_{1\uparrow} = t_{2\uparrow} = -t\alpha; t_{3\uparrow} = t_{4\uparrow} = -t\beta;
t_{1\downarrow} = -t_{2\downarrow} = tz\beta; t_{3\downarrow} = -t_{4\downarrow} = -tz^{*}\alpha
\end{align*} α = 2 3 3 + 1 ; β = 2 3 3 − 1 ; z = 2 1 − i ; a 1 = 2 cos k 1 ; a 2 = 2 cos k 2 ; a 3 = 2 cos k 3 t 12 = − 4 t ′ cos k 1 cos k 2 ; t 23 = − 4 t ′ cos k 2 cos k 3 ; t 13 = − 4 t ′ cos k 1 cos k 3 ; t 1 ↑ = t 2 ↑ = − t α ; t 3 ↑ = t 4 ↑ = − tβ ; t 1 ↓ = − t 2 ↓ = t z β ; t 3 ↓ = − t 4 ↓ = − t z ∗ α This gives us H ( k ) 12 × 12 H({\bf k})_{12\times 12} H ( k ) 12 × 12 , which is very difficult to diagonalize analytically, but still saves us from diagonalizing full real-space matrix of O ( N ) \cal{O}(N) O ( N ) size, and reduces the problem to O ( N ) \cal{O}(N) O ( N ) number of diagonalizations of 12 sized matrix.
The comparison of energies using the ϵ k \epsilon_{\bf k} ϵ k obtained for F,A,C and flux phases, one can draw the magnetic phase diagram for large lattice size (N ∼ 40 0 3 N\sim 400^3 N ∼ 40 0 3 ). The Figure 2 , shows the phase diagram, which can be compared to that obtained through real space calculations done on 203 size.
(a)
(b)
(c)
Figure 2: Phase diagram based on k k k space based diagonalisation for (a) t ′ = 0 t'=0 t ′ = 0 , (b) t ′ = 0.3 t'=0.3 t ′ = 0.3 , (c) t ′ = − 0.3 t'=-0.3 t ′ = − 0.3 . System size N = 16 0 3 N=160^{3} N = 16 0 3 . Here we can only use F, A, C and ‘flux’ phase as candidate states but some of the complexity of more elaborate phase diagrams of Non-Collinear magnetic order in the double perovskite , are already present.
2 FCC lattice setup ¶ On the FCC lattice, the primitive lattice translation vectors are
A ⃗ 1 = ( 0 , 1 , 1 ) , A ⃗ 2 = ( 1 , 0 , 1 ) , A ⃗ 3 = ( 1 , 1 , 0 ) \vec{A}_1~=~(0,1,1),\qquad \vec{A}_2~=~(1,0,1),\qquad \vec{A}_3~=~(1,1,0) A 1 = ( 0 , 1 , 1 ) , A 2 = ( 1 , 0 , 1 ) , A 3 = ( 1 , 1 , 0 ) All the points on FCC lattice are expressed in integer units of these, i.e., X ⃗ = n 1 A ⃗ 1 + n 2 A ⃗ 2 + n 3 A ⃗ 3 \vec{X} = n_1\vec{A}_1+n_2\vec{A}_2+n_3\vec{A}_3 X = n 1 A 1 + n 2 A 2 + n 3 A 3 = ( n 2 + n 3 , n 3 + n 1 , n 1 + n 2 ) (n_2+n_3,n_3+n_1,n_1+n_2) ( n 2 + n 3 , n 3 + n 1 , n 1 + n 2 ) = X ⃗ ( n 1 , n 2 , n 3 ) \vec{X}(n_1,n_2,n_3) X ( n 1 , n 2 , n 3 ) . Each site has 12 neighbours X + δ X+\delta X + δ , where
δ = ( 1 , 1 , 0 ) , ( − 1 , − 1 , 0 ) , ( 1 , 0 , 1 ) , ( − 1 , 0 , − 1 ) , ( 0 , 1 , 1 ) , ( 0 , − 1 , − 1 ) ( 1 , − 1 , 0 ) , ( − 1 , 1 , 0 ) , ( 1 , 0 , − 1 ) , ( − 1 , 0 , 1 ) , ( 0 , 1 , − 1 ) , ( 0 , − 1 , 1 ) \begin{align*}
\nonumber
\delta =& (~1,~1,~0),(-1,-1,~0),\\\nonumber
&(~1,~0,~1),(-1,~0,-1),\\\nonumber
&(~0,~1,~1),(~0,-1,-1)\\\nonumber
&(~1,-1,~0),(-1,~1,~0),\\\nonumber
&(~1,~0,-1),(-1,~0,~1),\\\nonumber
&(~0,~1,-1),(~0,-1,~1)
\end{align*} δ = ( 1 , 1 , 0 ) , ( − 1 , − 1 , 0 ) , ( 1 , 0 , 1 ) , ( − 1 , 0 , − 1 ) , ( 0 , 1 , 1 ) , ( 0 , − 1 , − 1 ) ( 1 , − 1 , 0 ) , ( − 1 , 1 , 0 ) , ( 1 , 0 , − 1 ) , ( − 1 , 0 , 1 ) , ( 0 , 1 , − 1 ) , ( 0 , − 1 , 1 ) Now lets see how the neighbours are labeled
N 1 = X ( n 1 , n 2 , n 3 ) + ( 1 , 1 , 0 ) = ( n 2 + n 3 , n 3 + n 1 , n 1 + n 2 ) + ( 1 , 1 , 0 ) = ( n 2 + ( n 3 + 1 ) , ( n 3 + 1 ) + n 1 , n 1 + n 2 ) = X ( n 1 , n 2 , n 3 + 1 ) \begin{align*}
\nonumber
N_1 &= X(n_1,n_2,n_3) + (1,1,0) = (n_2+n_3,n_3+n_1,n_1+n_2) + (1,1,0)\\\nonumber
&= (n_2+(n_3+1),(n_3+1)+n_1,n_1+n_2) = X(n_1,n_2,n_3+1)
\end{align*} N 1 = X ( n 1 , n 2 , n 3 ) + ( 1 , 1 , 0 ) = ( n 2 + n 3 , n 3 + n 1 , n 1 + n 2 ) + ( 1 , 1 , 0 ) = ( n 2 + ( n 3 + 1 ) , ( n 3 + 1 ) + n 1 , n 1 + n 2 ) = X ( n 1 , n 2 , n 3 + 1 ) Or,
N 1 = X ( n 1 , n 2 , n 3 ) + ( 1 , 1 , 0 ) = X ( n 1 , n 2 , n 3 + 1 ) \begin{align*}
\nonumber
N_1 &= X(n_1,n_2,n_3) + (1,1,0) = X(n_1,n_2,n_3+1)
\end{align*} N 1 = X ( n 1 , n 2 , n 3 ) + ( 1 , 1 , 0 ) = X ( n 1 , n 2 , n 3 + 1 ) Similarly, one gets the other five as
N 2 = X ( n 1 , n 2 , n 3 ) + ( − 1 , − 1 , 0 ) = X ( n 1 , n 2 , n 3 − 1 ) N 3 = X ( n 1 , n 2 , n 3 ) + ( 1 , 0 , 1 ) = X ( n 1 , n 2 + 1 , n 3 ) N 4 = X ( n 1 , n 2 , n 3 ) + ( − 1 , 0 , − 1 ) = X ( n 1 , n 2 − 1 , n 3 ) N 5 = X ( n 1 , n 2 , n 3 ) + ( 0 , 1 , 1 ) = X ( n 1 + 1 , n 2 , n 3 ) N 6 = X ( n 1 , n 2 , n 3 ) + ( 0 , − 1 , − 1 ) = X ( n 1 − 1 , n 2 , n 3 ) \begin{align*}
\nonumber
N_2 &= X(n_1,n_2,n_3) + (-1,-1,0) = X(n_1,n_2,n_3-1)\\\nonumber
N_3 &= X(n_1,n_2,n_3) + (1,0,1) = X(n_1,n_2+1,n_3)\\\nonumber
N_4 &= X(n_1,n_2,n_3) + (-1,0,-1) = X(n_1,n_2-1,n_3)\\\nonumber
N_5 &= X(n_1,n_2,n_3) + (0,1,1) = X(n_1+1,n_2,n_3)\\\nonumber
N_6 &= X(n_1,n_2,n_3) + (0,-1,-1) = X(n_1-1,n_2,n_3)
\end{align*} N 2 N 3 N 4 N 5 N 6 = X ( n 1 , n 2 , n 3 ) + ( − 1 , − 1 , 0 ) = X ( n 1 , n 2 , n 3 − 1 ) = X ( n 1 , n 2 , n 3 ) + ( 1 , 0 , 1 ) = X ( n 1 , n 2 + 1 , n 3 ) = X ( n 1 , n 2 , n 3 ) + ( − 1 , 0 , − 1 ) = X ( n 1 , n 2 − 1 , n 3 ) = X ( n 1 , n 2 , n 3 ) + ( 0 , 1 , 1 ) = X ( n 1 + 1 , n 2 , n 3 ) = X ( n 1 , n 2 , n 3 ) + ( 0 , − 1 , − 1 ) = X ( n 1 − 1 , n 2 , n 3 ) Next, we have,
N 7 = X ( n 1 , n 2 , n 3 ) + ( 1 , − 1 , 0 ) = ( n 2 + n 3 , n 3 + n 1 , n 1 + n 2 ) + ( 1 , − 1 , 0 ) = ( ( n 2 + 1 ) + n 3 , n 3 + ( n 1 − 1 ) , ( n 1 − 1 ) + ( n 2 + 1 ) ) = X ( n 1 − 1 , n 2 + 1 , n 3 ) \begin{align*}
\nonumber
N_7 &= X(n_1,n_2,n_3) + (1,-1,0) = (n_2+n_3,n_3+n_1,n_1+n_2) + (1,-1,0)\\\nonumber
&= ((n_2+1)+n_3,n_3+(n_1-1),(n_1-1)+(n_2+1)) = X(n_1-1,n_2+1,n_3)
\end{align*} N 7 = X ( n 1 , n 2 , n 3 ) + ( 1 , − 1 , 0 ) = ( n 2 + n 3 , n 3 + n 1 , n 1 + n 2 ) + ( 1 , − 1 , 0 ) = (( n 2 + 1 ) + n 3 , n 3 + ( n 1 − 1 ) , ( n 1 − 1 ) + ( n 2 + 1 )) = X ( n 1 − 1 , n 2 + 1 , n 3 ) Or,
N 7 = X ( n 1 , n 2 , n 3 ) + ( 1 , − 1 , 0 ) = X ( n 1 − 1 , n 2 + 1 , n 3 ) \begin{align*}
\nonumber
N_7 &= X(n_1,n_2,n_3) + (1,-1,0) = X(n_1-1,n_2+1,n_3)
\end{align*} N 7 = X ( n 1 , n 2 , n 3 ) + ( 1 , − 1 , 0 ) = X ( n 1 − 1 , n 2 + 1 , n 3 ) Similarly the other neighbours are labeled as
N 8 = X ( n 1 , n 2 , n 3 ) + ( − 1 , 1 , 0 ) = X ( n 1 + 1 , n 2 − 1 , n 3 ) N 9 = X ( n 1 , n 2 , n 3 ) + ( 1 , 0 , − 1 ) = X ( n 1 − 1 , n 2 , n 3 + 1 ) N 10 = X ( n 1 , n 2 , n 3 ) + ( − 1 , 0 , 1 ) = X ( n 1 + 1 , n 2 , n 3 − 1 ) N 11 = X ( n 1 , n 2 , n 3 ) + ( 0 , 1 , − 1 ) = X ( n 1 , n 2 − 1 , n 3 + 1 ) N 12 = X ( n 1 , n 2 , n 3 ) + ( 0 , − 1 , 1 ) = X ( n 1 , n 2 + 1 , n 3 − 1 ) \begin{align*}
\nonumber
N_8 &= X(n_1,n_2,n_3) + (-1,1,0) = X(n_1+1,n_2-1,n_3)\\\nonumber
N_9 &= X(n_1,n_2,n_3) + (1,0,-1) = X(n_1-1,n_2,n_3+1)\\\nonumber
N_{10} &= X(n_1,n_2,n_3) + (-1,0,1) = X(n_1+1,n_2,n_3-1)\\\nonumber
N_{11} &= X(n_1,n_2,n_3) + (0,1,-1) = X(n_1,n_2-1,n_3+1)\\\nonumber
N_{12} &= X(n_1,n_2,n_3) + (0,-1,1) = X(n_1,n_2+1,n_3-1)
\end{align*} N 8 N 9 N 10 N 11 N 12 = X ( n 1 , n 2 , n 3 ) + ( − 1 , 1 , 0 ) = X ( n 1 + 1 , n 2 − 1 , n 3 ) = X ( n 1 , n 2 , n 3 ) + ( 1 , 0 , − 1 ) = X ( n 1 − 1 , n 2 , n 3 + 1 ) = X ( n 1 , n 2 , n 3 ) + ( − 1 , 0 , 1 ) = X ( n 1 + 1 , n 2 , n 3 − 1 ) = X ( n 1 , n 2 , n 3 ) + ( 0 , 1 , − 1 ) = X ( n 1 , n 2 − 1 , n 3 + 1 ) = X ( n 1 , n 2 , n 3 ) + ( 0 , − 1 , 1 ) = X ( n 1 , n 2 + 1 , n 3 − 1 ) Thus if we label the sites ( n 1 , n 2 , n 3 ) (n_1,n_2,n_3) ( n 1 , n 2 , n 3 ) , the first six neighbours have labels, ( n 1 ± 1 , n 2 , n 3 ) (n_1\pm 1,n_2,n_3) ( n 1 ± 1 , n 2 , n 3 ) ,( n 1 , n 2 ± 1 , n 3 ) (n_1,n_2\pm 1,n_3) ( n 1 , n 2 ± 1 , n 3 ) , and ( n 1 , n 2 , n 3 ± 1 ) (n_1,n_2,n_3\pm 1) ( n 1 , n 2 , n 3 ± 1 ) , and the second six neighbours have labels ( n 1 ± 1 , n 2 ∓ 1 , n 3 ) (n_1\pm 1,n_2\mp 1,n_3) ( n 1 ± 1 , n 2 ∓ 1 , n 3 ) ,( n 1 ± 1 , n 2 , n 3 ∓ 1 ) (n_1\pm 1,n_2,n_3\mp 1) ( n 1 ± 1 , n 2 , n 3 ∓ 1 ) , and ( n 1 , n 2 ± 1 , n 3 ∓ 1 ) (n_1,n_2\pm 1,n_3\mp 1) ( n 1 , n 2 ± 1 , n 3 ∓ 1 ) .
Thus, the 12 neighbours of the FCC lattice correspond to 12 ‘neighbours’ in the ‘label’ lattice, first six of which are nearest neighbours, and second six of which are 6 selected next-nearest neighbours. So, though we need to define actual spin configurations on the FCC lattice, the corresponding Hamiltonian of FCC lattice is equivalent to that defined on the ‘label’ lattice.
Table 1: The neighbours on fcc lattice, (a) nearest neighbours (NN) and (b) next nearest neighbours (NNN).
δ \delta δ δ ′ \delta' δ ′ Jx _{x} x Jy _{y} y Jz _{z} z ( 1, 1, 0) ( 0, 0, 1) -t t t -t t t 0 (-1,-1, 0) ( 0, 0,-1) t t t t t t 0 ( 1, 0, 1) ( 0, 1, 0) -t t t 0 -t t t (-1, 0,-1) ( 0,-1, 0) t t t 0 t t t ( 0, 1, 1) ( 1, 0, 0) 0 -t t t -t t t ( 0,-1,-1) (-1, 0, 0) 0 t t t t t t ( 1,-1, 0) (-1, 1, 0) -t t t t t t 0 (-1, 1, 0) ( 1,-1, 0) t t t -t t t 0 ( 1, 0,-1) (-1, 0, 1) -t t t 0 t t t (-1, 0, 1) ( 1, 0,-1) t t t 0 -t t t ( 0, 1,-1) ( 0,-1, 1) 0 -t t t t t t ( 0,-1, 1) ( 0, 1,-1) 0 t t t -t t t
(a)
δ \delta δ δ ′ \delta' δ ′ Jx _{x} x Jy _{y} y Jz _{z} z ( 2, 0, 0) (-1, 1, 1) -t ′ t' t ′ 0 0 (-2, 0, 0) ( 1,-1,-1) t ′ t' t ′ 0 0 ( 0, 2, 0) ( 1,-1, 1) 0 -t ′ t' t ′ 0 ( 0,-2, 0) (-1, 1,-1) 0 t ′ t' t ′ 0 ( 0, 0, 2) ( 1, 1,-1) 0 0 -t ′ t' t ′ ( 0, 0,-2) (-1,-1, 1) 0 0 t ′ t' t ′
(b)
Sanyal, P., & Majumdar, P. (2009). Phys. Rev. B , 80 , 054411.