Skip to article frontmatterSkip to article content

Appendix

Harish-Chandra Research Institute, Prayagraj, UP, INDIA

1Tight binding systems

1.1Dispersion for ordered phases

Here we show how to calculate dispersion for selected ordered phases, which have relatively small unit cells. We define the unit cell for each phase, and go to kk-space where the Hamiltonian becomes block diagonal.

1.1.1Spectrum for collinear phases

The Hamiltonian can be diagonalized by Fourier transformation. We write the Hamiltonian HH as H=H0+HJH = H_{0}+H_{J}, where, H0H_0 is given by,

H0=Xσ[ϵ1fX,σfX,σ+ϵ2mX+a1,σmX+a1,σ]tX,σ,δNN(fX,σmX+δ,σ+h.c.) tX,σ,δNNN(mX+a1,σmX+a1+δ,σ+h.c.)\begin{align} \nonumber H_{0} &=&\sum_{\vec{X}\sigma} [ \epsilon_{1}f^{\dagger}_{\vec{X},\sigma}f_{\vec{X},\sigma} +\epsilon_{2}m^{\dagger}_{\vec{X}+\vec{a_1},\sigma}m^{\dagger}_{\vec{X}+\vec{a_1},\sigma}] -t\sum_{\vec{X},\sigma,\vec{\delta} \in \textrm{NN}}(f^{\dagger}_{\vec{X},\sigma}m_{\vec{X}+\vec{\delta},\sigma}+\textrm{h.c.}) \\ &~&-t'\sum_{\vec{X},\sigma,\vec{\delta}\in \textrm{NNN}}(m^{\dagger}_{\vec{X}+\vec{a_1},\sigma}m_{\vec{X}+\vec{a_1}+\vec{\delta},\sigma}+\textrm{h.c.})\\ \end{align}

and HJH_J is given by

HJ=JXS(X)σα,βfX,αfX,βH_{J} = J \sum_{\vec{X}}\vec{S}(\vec{X}) \cdot \vec{\sigma}_{\alpha,\beta}f^{\dagger}_{\vec{X},\alpha}f_{\vec{X},\beta}

The lattice vector X\vec{X} is defined as X=n1A1+n2A2+n3A3\vec{X} = n_{1}\vec{A_{1}} + n_{2}\vec{A_{2}} + n_{3}\vec{A_{3}} with Ai,i=1,2,3A_i,i=1,2,3 as the primitive lattice vectors (A1=(2,0,0)A_1=(2,0,0), A2=(1,1,0)A_2=(1,1,0), A3=(0,1,1)A_3=(0,1,1)), defining the periodicity of lattice with the 2 site unit cell. With this periodicity, the unit cell has one ‘ff’ and one ‘mm’ site at (0,0,0)(0,0,0) and (1,0,0)(1,0,0) respectively. Now doing a Fourier transform on ‘ff’ operators (similarly for 'mm’s)

fX,σ=1Nkfk,σexp(ikX)\begin{align*} f^{\dagger}_{\vec{X},\sigma} = \frac{1}{\sqrt{N}}\sum_{\vec{k}}f^{\dagger}_{\vec{k},\sigma}\exp(i\vec{k}\cdot\vec{X}) \end{align*}

This simplifies the non-magnetic part H0H_{0} as follows,

H0=k,σ[(ϵ2+Ak)mk,σmk,σ+ϵ1fk,σfk,σ+(Akfk,σmk,σ+h.c.)]\begin{align*}\nonumber H_{0} = \sum_{\vec{k},\sigma} \left[ (\epsilon_{2}+A'_{\vec{k}})m^{\dagger}_{\vec{k},\sigma}m_{\vec{k},\sigma} +\epsilon_{1}f^{\dagger}_{\vec{k},\sigma}f_{\vec{k},\sigma}+(A_{\vec{k}}f^{\dagger}_{\vec{k},\sigma}m_{\vec{k},\sigma}+\textrm{h.c.})\right] \end{align*}
=k,σ(fk,σmk,σ)(ϵ1AkAkϵ2+Ak)(fk,σmk,σ)=\sum_{\vec{k},\sigma}\left(f^{\dagger}_{\vec{k},\sigma} m^{\dagger}_{\vec{k},\sigma} \right) \left(\begin{array}{cc} \epsilon_1 & A_{\vec{k}}\\A_{\vec{k}} & \epsilon_2+A^{'}_{\vec{k}} \end{array}\right) \left(\begin{array}{c} f_{\vec{k},\sigma} \\ m_{\vec{k},\sigma} \end{array}\right)

Which is reduced to 2×22\times 2 block. the amplitudes Ak=2t(coskx+cosky+coskz)A_{\vec{k}}=-2t(\cos{k_{x}}+\cos{k_{y}}+\cos{k_{z}}) and Ak=4t(coskxcosky+coskycoskz+coskzcoskx)A'_{\vec{k}}=-4t'(\cos{k_{x}}\cos{k_{y}}+\cos{k_{y}}\cos{k_{z}}+\cos{k_{z}}\cos{k_{x}}) are just the cubic and FCC dispersions.

Next, we have to simplify the HJH_J part. For the collinear phases, S(X)\vec{S}(\vec{X}) can be expressed as S(X)=(0,0,eiqX)\vec{S}(\vec{X}) = (0,0,e^{i\vec{q}\cdot\vec{X}}). For FM, q\vec{q} is trivially (0,0,0)(0,0,0). For A-type, q=(π2,π2,π2)\vec{q} = (\frac{\pi}{2},-\frac{\pi}{2},\frac{\pi}{2}), while for C-type q=(0,π,π)\vec{q} = (0,\pi,-\pi). Now, plugging this value of S(X)\vec{S}(\vec{X}) in HJH_J and doing the Fourier transform for the HJH_J, we get,

HJ=Jxσfk,σfk+q,σ;σ=±1H_J = J\sum_{\vec{x}}\sigma f^{\dagger}_{\vec{k},\sigma}f_{\vec{k}+\vec{q},\sigma} \quad ;\sigma= \pm 1

Now q=0\vec{q}=0 for FM, so HJH_J becomes diagonal. Thus total Hamiltonian HH still remains 2×22\times 2 block, and the eigenvalues for the FM are solutions of the following 2×22\times 2 block

H2X2(k,σ)=(ϵ1+JσAkAkϵ2+Ak)H_{2X2}(\vec{k},\sigma) = \left( \begin{array}{cc} \epsilon_1 + J\sigma& A_{\vec{k}} \\ A_{\vec{k}} & \epsilon_{2} + A'_{\vec{k}} \end{array} \right)

For A-type and C-type phases, we get matrix elements connecting k,σk+q,σk,σ|\vec{k},\sigma\rangle \to |\vec{k}+\vec{q},\sigma\rangle \to |\vec{k},\sigma\rangle , so that now we get to solve following 4×44\times4 block

H4×4(k,σ)=(ϵ1JσAk0Jσϵ10Ak+qAk0ϵ2+Ak00Ak+q0ϵ2+Ak)H_{4\times4}(\vec{k},\sigma) = \left( \begin{array}{cccc} \epsilon_1 & J\sigma & A_{\vec{k}} & 0 \\ J\sigma & \epsilon_1 & 0 & A_{\vec{k}+\vec{q}} \\ A_{\vec{k}} & 0 & \epsilon_2+ A'_{\vec{k}} & 0 \\ 0 & A_{\vec{k}+\vec{q}} & 0 & \epsilon_2+ A'_{\vec{k}} \end{array} \right)

From these we obtain the spectrum for F,A,C phases on large (10035003\sim 100^3-500^3) lattices, which can be used to calculate the density of states, phase diagram, phase separation windows etc.

1.2Spectrum for the ‘flux’ phase

The unit cell for the ‘flux’ phase has 4BB, and 4BB' atoms lying on the corners of the cube. The primitive lattice vectors become Ai={(2,0,0),(0,2,0),(0,0,2)}A_i=\{(2,0,0),(0,2,0),(0,0,2)\} At finite JJ, the same procedure (as for collinear phases) will reduce the Hamiltonian into 16×1616\times 16 block. To make life a bit simple, we use the J\rightarrow \infty limit on the Hamiltonian for the ‘flux’ phase, which is same as used in (Sanyal & Majumdar (2009)) except its the 3D version.

Unit cell structure for the Flux phase.

Figure 1:Unit cell structure for the Flux phase.

This gives us 4 spin-less fif_i levels and 8 mi,σm_{i,\sigma} levels in the unit cell, which upon simplification reduces to 12×1212\times 12 block. With the basis (fi(k)mi(k))i{1,2,3,4}\left(\begin{array}{cc} f_i(k) & m_{i\uparrow}(k) \end{array}\right)_{i\in \{1,2,3,4\}} The Hamiltonian breaks into 12×1212\times 12 block given as follows

H=(Δ000t1a1t1a1t1a2t1a200t1a3t1a30Δ00t2a2t2a2t2a1t2a1t2a3t2a30000Δ0t3a3t3a300t3a2t3a2t3a1t3a1000Δ00t4a3t4a3t4a1t4a1t4a2t4a2t1a1t2a2t3a3000t120t230t130t1a1t2a2t3a30000t120t230t13t1a2t2a10t4a3t12000t130t230t1a2t2a10t4a30t12000t130t230t2a3t3a2t4a1t230t13000t1200t2a3t3a2t4a10t230t13000t12t1a30t3a1t4a2t130t230t12000t1a30t3a1t4a20t130t230t1200)H = \left( \begin{array}{cccccccccccc} \Delta & 0 & 0 & 0 & t_{1\uparrow}a_1 & t_{1\downarrow}a_1 & t_{1\uparrow}a_2 & t_{1\downarrow}a_2 & 0 & 0 & t_{1\uparrow}a_3 & t_{1\downarrow}a_3 \\ 0 & \Delta & 0 & 0 & t_{2\uparrow}a_2 & t_{2\downarrow}a_2 & t_{2\uparrow}a_1 & t_{2\downarrow}a_1 & t_{2\uparrow}a_3 & t_{2\downarrow}a_3 & 0 & 0 \\ 0 & 0 & \Delta & 0 & t_{3\uparrow}a_3 & t_{3\downarrow}a_3 & 0 & 0 & t_{3\uparrow}a_2 & t_{3\downarrow}a_2 & t_{3\uparrow}a_1 & t_{3\downarrow}a_1 \\ 0 & 0 & 0 & \Delta & 0 & 0 & t_{4\uparrow}a_3 & t_{4\downarrow}a_3 & t_{4\uparrow}a_1 & t_{4\downarrow}a_1 & t_{4\uparrow}a_2 & t_{4\downarrow}a_2 \\ t_{1\uparrow}^{*}a_1 & t_{2\uparrow}^{*}a_2 & t_{3\uparrow}^{*}a_3 & 0 & 0 & 0 & t_{12} & 0 & t_{23} & 0 & t_{13} & 0 \\ t_{1\downarrow}^{*}a_1 & t_{2\downarrow}^{*}a_2 & t_{3\downarrow}^{*}a_3 & 0 & 0 & 0 & 0 & t_{12} & 0 & t_{23} & 0 & t_{13} \\ t_{1\uparrow}^{*}a_2 & t_{2\uparrow}^{*}a_1 & 0 & t_{4\uparrow}^{*}a_3 & t_{12} & 0 & 0 & 0 & t_{13} & 0 & t_{23} & 0 \\ t_{1\downarrow}^{*}a_2 & t_{2\downarrow}^{*}a_1 & 0 & t_{4\downarrow}^{*}a_3 & 0 & t_{12} & 0 & 0 & 0 & t_{13} & 0 & t_{23} \\ 0 & t_{2\uparrow}^{*}a_3 & t_{3\uparrow}^{*}a_2 & t_{4\uparrow}^{*}a_1 & t_{23} & 0 & t_{13} & 0 & 0 & 0 & t_{12} & 0 \\ 0 & t_{2\downarrow}^{*}a_3 & t_{3\downarrow}^{*}a_2 & t_{4\downarrow}^{*}a_1 & 0 & t_{23} & 0 & t_{13} & 0 & 0 & 0 & t_{12} \\ t_{1\uparrow}^{*}a_3 & 0 & t_{3\uparrow}^{*}a_1 & t_{4\uparrow}^{*}a_2 & t_{13} & 0 & t_{23} & 0 & t_{12} & 0 & 0 & 0 \\ t_{1\downarrow}^{*}a_3 & 0 & t_{3\downarrow}^{*}a_1 & t_{4\downarrow}^{*}a_2 & 0 & t_{13} & 0 & t_{23} & 0 & t_{12} & 0 & 0 \end{array} \right)

Where the symbols in the above are defined as

α=3+123;  β=3123;  z=1i2;  a1=2cosk1;a2=2cosk2;a3=2cosk3t12=4tcosk1cosk2;t23=4tcosk2cosk3;t13=4tcosk1cosk3;t1=t2=tα;t3=t4=tβ;t1=t2=tzβ;t3=t4=tzα\begin{align*}\nonumber \alpha = \sqrt{\frac{\sqrt{3}+1}{2\sqrt{3}}};~~\beta = \sqrt{\frac{\sqrt{3}-1}{2\sqrt{3}}}; ~~ z = \frac{1-i}{\sqrt{2}};~~ a_1 = 2\cos{k_1}; a_2 = 2\cos{k_2}; a_3 = 2\cos{k_3}\\\nonumber t_{12} = -4t'\cos{k_1}\cos{k_2}; t_{23} = -4t'\cos{k_2}\cos{k_3}; t_{13} = -4t'\cos{k_1}\cos{k_3};\\\nonumber t_{1\uparrow} = t_{2\uparrow} = -t\alpha; t_{3\uparrow} = t_{4\uparrow} = -t\beta; t_{1\downarrow} = -t_{2\downarrow} = tz\beta; t_{3\downarrow} = -t_{4\downarrow} = -tz^{*}\alpha \end{align*}

This gives us H(k)12×12H({\bf k})_{12\times 12}, which is very difficult to diagonalize analytically, but still saves us from diagonalizing full real-space matrix of O(N)\cal{O}(N) size, and reduces the problem to O(N)\cal{O}(N) number of diagonalizations of 12 sized matrix.

The comparison of energies using the ϵk\epsilon_{\bf k} obtained for F,A,C and flux phases, one can draw the magnetic phase diagram for large lattice size (N4003N\sim 400^3). The Figure 2, shows the phase diagram, which can be compared to that obtained through real space calculations done on 203 size.

Phase diagram based on k space based diagonalisation for (a) t'=0, (b) t'=0.3, (c) t'=-0.3. System size N=160^{3}. Here we can only use  F, A, C and ‘flux’ phase as candidate states but some of the complexity of more elaborate phase diagrams of , are already present.

(a)

Phase diagram based on k space based diagonalisation for (a) t'=0, (b) t'=0.3, (c) t'=-0.3. System size N=160^{3}. Here we can only use  F, A, C and ‘flux’ phase as candidate states but some of the complexity of more elaborate phase diagrams of , are already present.

(b)

Phase diagram based on k space based diagonalisation for (a) t'=0, (b) t'=0.3, (c) t'=-0.3. System size N=160^{3}. Here we can only use  F, A, C and ‘flux’ phase as candidate states but some of the complexity of more elaborate phase diagrams of , are already present.

(c)

Figure 2:Phase diagram based on kk space based diagonalisation for (a) t=0t'=0, (b) t=0.3t'=0.3, (c) t=0.3t'=-0.3. System size N=1603N=160^{3}. Here we can only use F, A, C and ‘flux’ phase as candidate states but some of the complexity of more elaborate phase diagrams of Non-Collinear magnetic order in the double perovskite, are already present.

2FCC lattice setup

On the FCC lattice, the primitive lattice translation vectors are

A1 = (0,1,1),A2 = (1,0,1),A3 = (1,1,0)\vec{A}_1~=~(0,1,1),\qquad \vec{A}_2~=~(1,0,1),\qquad \vec{A}_3~=~(1,1,0)

All the points on FCC lattice are expressed in integer units of these, i.e., X=n1A1+n2A2+n3A3\vec{X} = n_1\vec{A}_1+n_2\vec{A}_2+n_3\vec{A}_3 = (n2+n3,n3+n1,n1+n2)(n_2+n_3,n_3+n_1,n_1+n_2) = X(n1,n2,n3)\vec{X}(n_1,n_2,n_3). Each site has 12 neighbours X+δX+\delta, where

δ=( 1, 1, 0),(1,1, 0),( 1, 0, 1),(1, 0,1),( 0, 1, 1),( 0,1,1)( 1,1, 0),(1, 1, 0),( 1, 0,1),(1, 0, 1),( 0, 1,1),( 0,1, 1)\begin{align*} \nonumber \delta =& (~1,~1,~0),(-1,-1,~0),\\\nonumber &(~1,~0,~1),(-1,~0,-1),\\\nonumber &(~0,~1,~1),(~0,-1,-1)\\\nonumber &(~1,-1,~0),(-1,~1,~0),\\\nonumber &(~1,~0,-1),(-1,~0,~1),\\\nonumber &(~0,~1,-1),(~0,-1,~1) \end{align*}

Now lets see how the neighbours are labeled

N1=X(n1,n2,n3)+(1,1,0)=(n2+n3,n3+n1,n1+n2)+(1,1,0)=(n2+(n3+1),(n3+1)+n1,n1+n2)=X(n1,n2,n3+1)\begin{align*} \nonumber N_1 &= X(n_1,n_2,n_3) + (1,1,0) = (n_2+n_3,n_3+n_1,n_1+n_2) + (1,1,0)\\\nonumber &= (n_2+(n_3+1),(n_3+1)+n_1,n_1+n_2) = X(n_1,n_2,n_3+1) \end{align*}

Or,

N1=X(n1,n2,n3)+(1,1,0)=X(n1,n2,n3+1)\begin{align*} \nonumber N_1 &= X(n_1,n_2,n_3) + (1,1,0) = X(n_1,n_2,n_3+1) \end{align*}

Similarly, one gets the other five as

N2=X(n1,n2,n3)+(1,1,0)=X(n1,n2,n31)N3=X(n1,n2,n3)+(1,0,1)=X(n1,n2+1,n3)N4=X(n1,n2,n3)+(1,0,1)=X(n1,n21,n3)N5=X(n1,n2,n3)+(0,1,1)=X(n1+1,n2,n3)N6=X(n1,n2,n3)+(0,1,1)=X(n11,n2,n3)\begin{align*} \nonumber N_2 &= X(n_1,n_2,n_3) + (-1,-1,0) = X(n_1,n_2,n_3-1)\\\nonumber N_3 &= X(n_1,n_2,n_3) + (1,0,1) = X(n_1,n_2+1,n_3)\\\nonumber N_4 &= X(n_1,n_2,n_3) + (-1,0,-1) = X(n_1,n_2-1,n_3)\\\nonumber N_5 &= X(n_1,n_2,n_3) + (0,1,1) = X(n_1+1,n_2,n_3)\\\nonumber N_6 &= X(n_1,n_2,n_3) + (0,-1,-1) = X(n_1-1,n_2,n_3) \end{align*}

Next, we have,

N7=X(n1,n2,n3)+(1,1,0)=(n2+n3,n3+n1,n1+n2)+(1,1,0)=((n2+1)+n3,n3+(n11),(n11)+(n2+1))=X(n11,n2+1,n3)\begin{align*} \nonumber N_7 &= X(n_1,n_2,n_3) + (1,-1,0) = (n_2+n_3,n_3+n_1,n_1+n_2) + (1,-1,0)\\\nonumber &= ((n_2+1)+n_3,n_3+(n_1-1),(n_1-1)+(n_2+1)) = X(n_1-1,n_2+1,n_3) \end{align*}

Or,

N7=X(n1,n2,n3)+(1,1,0)=X(n11,n2+1,n3)\begin{align*} \nonumber N_7 &= X(n_1,n_2,n_3) + (1,-1,0) = X(n_1-1,n_2+1,n_3) \end{align*}

Similarly the other neighbours are labeled as

N8=X(n1,n2,n3)+(1,1,0)=X(n1+1,n21,n3)N9=X(n1,n2,n3)+(1,0,1)=X(n11,n2,n3+1)N10=X(n1,n2,n3)+(1,0,1)=X(n1+1,n2,n31)N11=X(n1,n2,n3)+(0,1,1)=X(n1,n21,n3+1)N12=X(n1,n2,n3)+(0,1,1)=X(n1,n2+1,n31)\begin{align*} \nonumber N_8 &= X(n_1,n_2,n_3) + (-1,1,0) = X(n_1+1,n_2-1,n_3)\\\nonumber N_9 &= X(n_1,n_2,n_3) + (1,0,-1) = X(n_1-1,n_2,n_3+1)\\\nonumber N_{10} &= X(n_1,n_2,n_3) + (-1,0,1) = X(n_1+1,n_2,n_3-1)\\\nonumber N_{11} &= X(n_1,n_2,n_3) + (0,1,-1) = X(n_1,n_2-1,n_3+1)\\\nonumber N_{12} &= X(n_1,n_2,n_3) + (0,-1,1) = X(n_1,n_2+1,n_3-1) \end{align*}

Thus if we label the sites (n1,n2,n3)(n_1,n_2,n_3), the first six neighbours have labels, (n1±1,n2,n3)(n_1\pm 1,n_2,n_3),(n1,n2±1,n3)(n_1,n_2\pm 1,n_3), and (n1,n2,n3±1)(n_1,n_2,n_3\pm 1), and the second six neighbours have labels (n1±1,n21,n3)(n_1\pm 1,n_2\mp 1,n_3),(n1±1,n2,n31)(n_1\pm 1,n_2,n_3\mp 1), and (n1,n2±1,n31)(n_1,n_2\pm 1,n_3\mp 1).

Thus, the 12 neighbours of the FCC lattice correspond to 12 ‘neighbours’ in the ‘label’ lattice, first six of which are nearest neighbours, and second six of which are 6 selected next-nearest neighbours. So, though we need to define actual spin configurations on the FCC lattice, the corresponding Hamiltonian of FCC lattice is equivalent to that defined on the ‘label’ lattice.

Table 1:The neighbours on fcc lattice, (a) nearest neighbours (NN) and (b) next nearest neighbours (NNN).

δ\deltaδ\delta'Jx_{x}Jy_{y}Jz_{z}
( 1, 1, 0)( 0, 0, 1)-tt-tt0
(-1,-1, 0)( 0, 0,-1)tttt0
( 1, 0, 1)( 0, 1, 0)-tt0-tt
(-1, 0,-1)( 0,-1, 0)tt0tt
( 0, 1, 1)( 1, 0, 0)0-tt-tt
( 0,-1,-1)(-1, 0, 0)0tttt
( 1,-1, 0)(-1, 1, 0)-tttt0
(-1, 1, 0)( 1,-1, 0)tt-tt0
( 1, 0,-1)(-1, 0, 1)-tt0tt
(-1, 0, 1)( 1, 0,-1)tt0-tt
( 0, 1,-1)( 0,-1, 1)0-tttt
( 0,-1, 1)( 0, 1,-1)0tt-tt

(a)

δ\deltaδ\delta'Jx_{x}Jy_{y}Jz_{z}
( 2, 0, 0)(-1, 1, 1)-tt'00
(-2, 0, 0)( 1,-1,-1)tt'00
( 0, 2, 0)( 1,-1, 1)0-tt'0
( 0,-2, 0)(-1, 1,-1)0tt'0
( 0, 0, 2)( 1, 1,-1)00-tt'
( 0, 0,-2)(-1,-1, 1)00tt'

(b)

References
  1. Sanyal, P., & Majumdar, P. (2009). Phys. Rev. B, 80, 054411.